Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Toxicol ; 20(1): 39-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847352

RESUMO

INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). One of the glaring gaps is the lack of rigorous experimental models that may recapitulate survivors of acute CO poisoning in the early phase. The primary objective of this preliminary study is to use our advanced swine platform of acute CO poisoning to develop a clinically relevant survivor model to perform behavioral assessment and MRI imaging that will allow future development of biomarkers and therapeutics. METHODS: Four swine (10 kg) were divided into two groups: control (n = 2) and CO (n = 2). The CO group received CO at 2000 ppm for over 120 min followed by 30 min of re-oxygenation at room air for one swine and 150 min followed by 30 min of re-oxygenation for another swine. The two swine in the sham group received room air for 150 min. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. Following exposures, all surviving animals were observed for a 24-h period with neurobehavioral assessment and imaging. At the end of the 24-h period, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. RESULTS: While a preliminary ongoing study, animals in the CO group showed alterations in cerebral metabolism and cellular function in the acute exposure phase with possible sustained mitochondrial changes 24 h after the CO exposure ended. CONCLUSIONS: This preliminary research further establishes a large animal swine model investigating survivors of CO poisoning to measure translational metrics relevant to clinical medicine that includes a basic neurobehavioral assessment and post exposure cellular measures.


Assuntos
Intoxicação por Monóxido de Carbono , Animais , Suínos , Intoxicação por Monóxido de Carbono/terapia , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imageamento por Ressonância Magnética , Monóxido de Carbono/toxicidade , Monóxido de Carbono/metabolismo
2.
Metabolites ; 13(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999249

RESUMO

Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.

4.
J Med Toxicol ; 18(3): 214-222, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35482181

RESUMO

INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). The purpose of this ongoing study is the preliminary development of a porcine model of CO poisoning for investigation of alterations in brain mitochondrial physiology. METHODS: Four pigs (10 kg) were divided into two groups: Sham (n = 2) and CO (n = 2). Administration of a dose of CO at 2000 ppm to the CO group over 120 minutes followed by 30 minutes of re-oxygenation at room air. The control group received room air for 150 minutes. Non-invasive optical monitoring was used to measure CIV redox states. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. At the end of the exposure, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Snap frozen cortical tissue was also used for ATP concentrations and western blotting. RESULTS: While a preliminary ongoing study, animals in the CO group showed possible early decreases in brain mitochondrial respiration, citrate synthase density, CIV redox changes measured with optics, and an increase in the lactate-to-pyruvate ratio. CONCLUSIONS: There is a possible observable phenotype highlighting the important role of mitochondrial function in the injury of CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono , Animais , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução , Suínos
5.
Environ Toxicol Chem ; 27(3): 561-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17988179

RESUMO

Crude oils are complex mixtures of many thousands of compounds, both resolved and unresolved by conventional gas chromatography (GC). Recent research using comprehensive two-dimensional gas chromatography-time-of-flight-mass-spectrometry (GC x GC-ToF-MS) identified branched alkylbenzenes (BABs) as a major component of some unresolved complex mixtures of hydrocarbons (UCMs) bioaccumulated in the tissues of North Sea mussels, Mytilus edulis, previously found to have poor health status. Here the effect of long-term exposure to low aqueous concentration of BABs and mussels' ability to recover, was determined. Mussels were exposed to 5 microg/L of a complex mixture of C(12-14) BABs for 14 d. Feeding rates and the viability of hemocytes were measured immediately after exposure and again after 5 d depuration. Tissues were extracted, analyzed and alkylbenzenes quantified by both GC-MS and GC x GC-ToF-MS. Mussel extracts from previous acute tests were also reanalyzed and quantified using GC x GC-ToF-MS. Mussels exposed to 5 microg/L BABs for 14 d accumulated 46 to 47 microg/g dry weight alkylbenzenes; this was similar to tissue concentrations of mussels exposed to 41microg/L for 72 h. Feeding rates were significantly reduced (p < or = 0.05) and were dependent upon tissue concentration. Cellular viability was not significantly affected. Following 5 d in clean seawater, the BABs were only partially depurated and feeding rates failed to fully recover. The use of GC x GC-ToF-MS in the present study has shown that mussel tissue concentrations of complex mixtures of alkylbenzenes, and their corresponding effects, are consistent with reported concentrations within UCM-contaminated wild mussel populations with poor health status.


Assuntos
Derivados de Benzeno/química , Derivados de Benzeno/toxicidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/metabolismo , Animais , Derivados de Benzeno/metabolismo , Fatores de Tempo , Água/química , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...